

Hydration Behavior Of Celitement

Angela Ullrich, Krassimir Garbev, Peter Stemmermann

4th European Cement Calorimetry Conference

Celitement

 is a spin-off of the Karlsruher Institute of Technology (KIT) in cooperation with the industry partner Schwenk

- is the brand name for a group of high-quality hydraulic binders
- is comparable to Portland cement (OPC) in applicability and durability
- is based on the same raw materials as OPC
- is a pure CSH-binder with a dense microstructure
- is produced by an innovative combination of a hydrothermal process with subsequent grinding where the hydraulic binder forms

Production and Hydration of Celitement

→What impact has the absence of Portlandite (CH) in the hydration process?

Heat Flow for Celitement and OPC

 \rightarrow Low heat of hydration due to less solution of Ca

Measurement Conditions

TAM Air 8-channels with 20ml Admix glass ampoules and syringes for water injection

1g Sample + 1g H_2O water demand Celitement: w/c-0.4

> No stirring required

Subtraction of initial background

→ Deviation in heat of hydration due to sample inhomogeneity and measurement: ±2%

Influence of C/S-ratio on the Heat Flow

 \rightarrow Is there an increase in cumulative heat with C/S?

Karlsruhe Institute of Technology

Influence of C/S-ratio on the Heat of Hydration

Heat ~ Enthalpy of Ca solution hence no straight dependency on C/S

→ What parameters control the reactivity of the binder?

Influence of Grinding Time on the Heat Flow

→ Is there a decrease in cumulative heat with overgrinding?

Influence of Grinding Time on the HoH

Difference in kinetics, not in the amount of Ca that is available for solution

→ How does the addition of reactive Ca affect the kinetics?

Karlsruhe Institute of Technology

Co-grinding of Celitement with CH

→ What are the differences in solution-precipitation mechanisms in samples with addition of 5 and 10% CH?

Co-grinding of Celitement with CH

→ Is the formation of CSH terminated after 40h of hydration?

Karlsruhe Institute of Technology

Co-grinding of Celitement with CH

→ High amount of Ca dissolution from CH results in the formation of a passivation layer of CSH on hCHS

Calorimetry on Celitement...

- is challenging because binders with low C/S-ratio produce low cummulative Heat of Hydration
- can only provide information on the kinetics of the Hydration but not on the material properties
- with addition of CH proves that the hydration behavior of binders with low Ca-content strongly depends on the pH

13