Application of calorimetry for hydration study of belite-ferrite-ye’elimite cements

Maciej Zajac
Frank Bullerjahn, Mohsen Ben Haha
4th European Cement Calorimetry Conference
Dresden 2018
Outline

- Background
- Hydration of BYF
- Hydration of Ye’elimite
- Parameters influencing hydration of Ye’elimite
- Retarders
- Conclusions
Background

HeidelbergCement considers introduction of the alternative hydraulic binders like belite – ye’elimite – ferrite binder (BYF) to the market.

The advantages of such systems include:
- BYF provides a low-CO₂ alternative to Portland cement
- Production is matured
- Raw materials are available
- Similar characteristics and performance evolution to PC based binders
Background

Application examples
RMX monolithic road construction (5*60 m) with and without reinforcement
Background

Application examples
Production of reinforced panels

“This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 637138.”
- Hydration mechanisms are well investigated
- There are still several phenomena lacking a sound understanding
Hydration of BYF system

- Ye’elimite is rapidly hydrating phase

\[C_4A_3\bar{S} \rightarrow C_3A\bar{C}\bar{S}H_{12} + AH_3 \]

\[C_4A_3\bar{S} + C\bar{S}H_2 \rightarrow C_3A3C\bar{S}H_{32} + AH_3 \]

- Belite and ferrite phase react slower

\[C_2S + AH_3 + C_3A3C\bar{S}H_{32} \rightarrow C_3A\bar{C}\bar{S}H_{12} + C_2ASH_8 \]

\[C_2S \rightarrow C – S – H + CH \]
Hydration of BYF system

- BYF clinker from one industrial trial (45-48% B; 28-30% Y; 3-5% F)
- Isothermal conduction calorimetry

What causes the differences in BYF?
Y is not representative for BYF?
Hydration of yeʻelimite: PhD of Frank Bullerjahn

Slide 9 12.12.2018
Application of calorimetry – Maciej Zajac
Hydration of ye‘elimite: PhD of Frank Bullerjahn

- The main hydration peak is associated with the reaction of ye‘elimite
 - Acceleration period: formation of ettringite
 - Main hydration peak; formation of monosulphate

Two main reactions

\[
3 \, C_4A_3\overline{S} + 98 \, H \rightarrow \quad 1 \, C_6A\overline{S}_3H_{32} + 2 \, CAH_{10} + 2 \, AH_3
\]

\[
1 \, C_4A_3\overline{S} + 18 \, H \rightarrow 1 \, C_4A\overline{S}H_{12} + 2 \, AH_3
\]
Hydration of BYF clinker (no sulfate addition)

- CAH$_{10}$ is the main component of amorphous at early times
- At later times the strätlingite and monosulfate dominate
Hydration of BYF clinker with sulfate addition

- Ettringite is the dominating phase, no CAH$_{10}$ present
- Formation of strätlingite and monosulfate delayed

![Graph showing hydration of BYF-10G](Image)
Hydration of ye‘elimite: PhD of Frank Bullerjahn

Why in cement, the ye‘elimite hydration is so rapid?
Parameters influencing hydration of Ye‘elimite

- Synthesis of iron solid solution of ye‘elimite at 1300 °C
 - With \(x \) from 0.00 to 0.80 in \(C_4A_{3-x}F_xS \)

![Graphs showing content and heat release over time for various iron solid solutions of ye‘elimite.](image-url)
Parameters influencing hydration of Ye‘elimite

Effect of mayenite

- Explains higher Ca and Al concentration

![Graph showing the effect of mayenite on hydration](image)
Parameters influencing hydration of Ye‘elimite

- Analysis of the pore solution allows to understand the effect of mayenite
Parameters influencing hydration of Ye‘elimite

- Analysis of the pore solution allows to understand the effect of mayenite
Parameters influencing hydration of Ye‘elimite

- Mayenite dissolution results in the increase of Ca/Al ratio in the pore solution

Explains higher Ca and Al concentration

![Graph showing the increase of Ca and Al concentration over time](image)
Effect of retarder

- Borax delays the onset of reaction, but not delays strongly the ye’elimite hydration
Effect of retarder

Proper retardation has effect on overall cement performance
Conclusions

Hydration of ye’elimite

- Hydration of ye’elimite dominates the early hydration of cement
- Two main hydration reactions instead of a single reaction of ye’elimite

Parameters influencing the hydration of ye’elimite

- The presence of mayenite causes the faster hydration
 - Iron improves the raw mix burnability causing the faster formation of ye’elimite, followed by its decomposition -> Formation of secondary mayenite

Retarder - borax

- Borax delays the onset of reaction, but not delays strongly the ye’elimite hydration