Reactivity tests for Supplementary Cementitious Materials (SCMs)

François Avet, Xuerun Li, Karen Scrivener

RILEM TC-267 TRM committee

12.12.2018

Decrease of the availability of traditional SCMs

- New sources or combination of SCMs are considered
- Wide availability of calcined clay with various grades and also limestone

Assessment of SCM reactivity

- Usual way: measurement of compressive strength of blended cement
- However, this test is time and material consuming (28 days as reference value)

- Reactivity tests developed to get a quicker indication of the reactivity of SCMs
- Ideally, tests as quick, simple, robust, reproducible and cheap as possible

RILEM TC 267-TRM aims to compare existing and innovative reactivity tests to give a recommendation that can be adopted as standard testing method.

- 21 participants
 - 11 SCMs
- 10 different techniques

Objectives of the RILEM TC 267-TRM

- Phase I work:
 - Comparison of existing and novel methods
 - Test on a wide range of SCMs
 - Correlation with reference mortar strength
 - Selection of the most accurate tests
- Phase II: Test robustness of protocols
 - Identification of key parameters
 - Improve the protocols

Materials and Methods

SCMs		
2 calcined clays		
2 slags		
2 calcareous fly ashes		
2 siliceous fly ashes		
Natural pozzolana		
Quartz as inert		

Test	Standard
Chapelle test or modified version	NF P18-513
Frattini test	EN 196-5
Reactive silica	EN 197-1 / EN 196-2
Lime reactivity test	IS 1727
R ³ test	-

Measures the reactivity of SCM based on CH characterization

Compressive strength measurement of SCM:CH binary blends

Monitoring reactivity of SCMs: R³ test

- Rapid, Relevant and Reliable (R³)
- Focus on SCM reaction only
 - Adjustment of sulfate and alkali content to reproduce the reaction environment of hydrating blended cements

Components	Mass (g)
SCM	11.11
Portlandite	33.33
Deionized Water	60
КОН	0.24
K ₂ SO ₄	1.20
Calcite	5.56

Two ways of measuring the reactivity

Isothermal calorimetry at 40°C Heat release 7d

Oven thermal treatment at 350°C Bound water 7d

Adjustment of portlandite to SCM ratio

- Plateau reached for 1/3 1/2 and 1/1
- In order not to run out of portlandite, 3/1 was chosen

Avet et al (2016)

Determination of bound water

- Mass evolution after thermal treatment at 350°C for for 2 hours
- Only requires a balance and an oven

Results: Strength test as reference (30% substitution)

- 6 cements used in 6 different labs
- Significant differences, even though all cements used for the blends are CEM I 42.5 R

Correlation between reactivity tests and strength

Phase I: Most promising results obtained with the R³ test

- Frattini and Chapelle tests give poor correlation to strength, with very low interlab reproducibility.
- Improvement of Frattini by excluding slags
- R³ tests using calorimetry and bound water give high correlation to strength and are the most reproducible

 R³ deeper investigated in phase II for improving the protocols and the robustness

Li et al (2018)

RILEM TECHNICAL COMMITTEE REPORT

Reactivity tests for supplementary cementitious materials: RILEM TC 267-TRM phase 1

Xuerun Li • Ruben Snellings · Mathieu Antoni · Natalia Mariel Alderete · Mohsen Ben Haha · Shashank Bishnoi · Özlem Cizer · Martin Cyr · Klaartje De Weerdt · Yuvaraj Dhandapani · Josée Duchesne · Johannes Haufe · Doug Hooton · Maria Juenger · Siham Kamali-Bernard · Sabina Kramar · Milena Marroccoli · Aneeta Mary Joseph · Anuj Parashar · Cedric Patapy · John L. Provis · Sergio Sabio · Manu Santhanam · Laurent Steger · Tongbo Sui · Antonio Telesca · Anya Vollpracht · Felipe Vargas · Brant Walkley · Frank Winnefeld · Guang Ye · Maciej Zajac · Shizhe Zhang · Karen L. Scrivener

■ Phase I work:

- Comparison of existing of novel methods
- Test on a wide range of SCMs
- Correlation with reference mortar strength
- Phase II: Test robustness of protocols
 - Identification of key parameters
 - Improve the protocols

Investigation of the robustness and reproducibility of R³

- R³ Heat release
 - Premixing and mixing conditions
 - Mix design composition
 - Water bath
- R³ Bound water
 - Drying procedure

Premix and mix conditions

 X_MH

Hand

Mix composition change

X_15

Mix composition change

(5 inputs)

Initial mix

Water bath during casting

(5 participants)

Accumulative heat (average)

Investigation of the robustness and reproducibility of R³

- R³ Heat release
 - Premixing and mixing conditions
 - Mix design composition
 - Water bath
- R³ Bound water
 - Drying procedure

Drying step investigation

Bound water – different drying procedures

Bound water – different drying procedures

(7 participants)

Correlation to relative strength

	Boundwater		
R2	BW_50	BW_105	BW_Sol.
Mortar_28	0.92	0.71	0.69
Mortar_90	0.24	0.05	0.04
CV (%)	22.7	26.6	26.9

Bound water – different drying procedures

Conclusion on phase II

- Finalization of the protocols
 - Heat of hydration
 - Premix or mixing did not show significant impact on the results
 - Recommended to use mechanical mixing if available
 - 25% of SCM in the mix design is a good compromise
 - 1.2 water to binder ratio works well
 - Water bath does not really help
 - Bound water
 - Drying step at 40° C, simpler and better reproducibility
- Standard in preparation for using in phase III

Phase III

- Validation across wide range of SCMs
- Definition of scope of test method boundary conditions
 - Conventional SCMs and material currently falling outside of standards
 - Dependence on clinker replacement ratios
 - Impact of temperature
 - Water to binder ratio

Flyer

Participation in the RILEM TC 267-TRM reactivity test

The RILEM TC-TRM "Tests for Reactivity of Supplementary Cementitious Materials" concluded that two main methods (R³ calorimeter and oven technique) are the most promising for evaluating the reactivity of SCMs. The next step is to apply these two methods to a broader and a more substantial number of new and more conventional SCMs.

If you want your material to be tested, requirements are:

- Fill the online form: Deadline: 31st December 2018

Quantity of SCM: 50 kg of dry ground homogenized

SCMs to be sent to EPFL (Switzerland) before the end of

April 2019

- Fineness of SCM: $d_{50} < 20 \mu m$

What we offer:

- SCM characterization
- Testing of reactivity through mortar test and R3
- Report on the assessment of reactivity

- Cost: 500 euros for participation + shipping cost

To visit us

https://www.rilem.net/group e/267-trm-tests-forreactivity-of-supplementarycementitious-materials-339

Form for SCM testing RILEM TC 267-TRM

Deadline: 31st December 2018

	Deadine. 51	December 2010
Name:		
First name:		
Address:		
Zip code:		
City:		
Country:		
Description of y	our material:	
Preparation:		
·		
Rough composi	ition / presence	e of hazardous materials:

Our committee will screen all the application forms and will contact you for the acceptation of your material by the end of January 2019.

To visit us: https://www.rilem.net/group e/267-trm-tests-forreactivity-of-supplementarycementitious-materials-339

3rd workshop at EPFL, Switzerland, *April 2017*

Scan to link to TRM website¹

4th meeting in Chennai, India, September 2017

5th meeting in Leuven, Belgium, *April 2018*

Thank you for your attention

Correlation between reactivity tests and strength

90d relative strength (%)

28d relative strength (%)

FÉDÉRALE DE LAUSANNE

Different calorimeter (U. Toronto - Calmetrix)

Accumulative heat (average)

Selection of the cement – PC strength and relative strength for Q

Quartz (Q)

Selection of the cement – relative strength CC2 and S8

